



## STALIF<sup>®</sup> M Portfolio

No Profile<sup>®</sup> Anterior Lumbar Integrated Interbody<sup>™</sup> Systems

### TECHNIQUE & PRODUCT GUIDE



STALIF<sup>®</sup> M FLX



STALIF<sup>®</sup> M Ti



\*Not All Products Available in All Markets

# STALIF® M Portfolio

## TABLE OF CONTENTS

|                                                      |                |
|------------------------------------------------------|----------------|
| <b>STALIF M System</b>                               | <b>3 - 4</b>   |
| STALIF M Implants                                    | 4              |
| <b>STALIF Design Rationale</b>                       | <b>5 - 6</b>   |
| Indications, Warnings & Precautions                  | 7              |
| Case Preparation                                     | 8              |
| Required Sets                                        | 8              |
| Quick Reference Guide                                | 8              |
| <b>Surgical Technique</b>                            | <b>9 - 25</b>  |
| Approach                                             | 9              |
| Discectomy & Endplate Preparation                    | 10             |
| Trialing                                             | 11 - 12        |
| Device Insertion                                     | 13 - 18        |
| Screw Placement                                      | 19 - 22        |
| X-Ray Confirmation                                   | 23 - 24        |
| Removal/Revision                                     | 25             |
| Supplemental Fixation                                | 25             |
| <b>Tips &amp; Pearls</b>                             | <b>26</b>      |
| <b>APPENDIX: STALIF M System Instrument Offering</b> | <b>27 - 31</b> |
| Standard Instrument Set BOM                          | 27             |
| Optional Disc Prep Set BOM                           | 28             |
| Additionally Available Instruments (Special Order)   | 29 - 31        |
| <b>References</b>                                    | <b>32</b>      |

## STALIF M Portfolio

The **STALIF M** Portfolio is a comprehensive set of instruments and implants designed to support an anterior approach to the lumbar spine. The **STALIF M** portfolio No Profile® implant designs are engineered to conform to patient anatomy, simplify surgery, enhance stability, and maximize opportunities for fusion.

**STALIF M** portfolio Integrated Interbody™ lumbar fusion devices are designed to achieve immediate load-sharing and segmental stability. Innovative implant design complemented by unique cancellous screws co-function during the healing process to form an “integrated” fusion construct that is highly stable. Laboratory evaluations have repeatedly shown that the **STALIF M** product family attains equivalent biomechanical performance to anterior plate and cage technologies, as well as anterior cage and posterior pedicle screw constructs.<sup>1</sup>

**STALIF M** portfolio implants are provided in 3 state of the art material options, including **FLX®** (Flexible Lucent MatriX 3D-Printed titanium FUSE-THRU® trabecular scaffold), **Ti-ACTIVE™** (microporous texturized titanium surface), and **PEEK** (poly-ether-ether-ketone). Unlike other stand-alone implants, **STALIF®** devices are manufactured according to a specific biomechanical design rationale. This rationale was established with the original **STALIF** device introduced over 35 years ago. Through its multiple product iterations, **STALIF** has remained consistent and steadfast with the original design rationale.

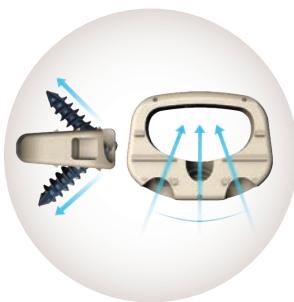


## STALIF M FLX Implants

**STALIF M FLX** implants are the next evolution in **STALIF** devices. These 3D-printed porous titanium Integrated Interbody devices feature a combination of solid and porous, radiolucent FUSE-THRU titanium sections which reduce mechanical stiffness and improve visibility compared to solid titanium implants. The proprietary FUSE-THRU trabecular scaffold is modeled to allow for bony in-growth, on-growth, and thru-growth.



## STALIF M Ti Implants


**STALIF M-Ti** is an innovative, titanium-surfaced, PEEK Integrated Interbody device design that blends the benefits of titanium and PEEK integrated interbody devices. PEEK has superior visualization properties and a modulus of elasticity that is similar to that of cortical bone while titanium is cell-friendly and enables human mesenchymal stem cells to adhere to the surface and proliferate.

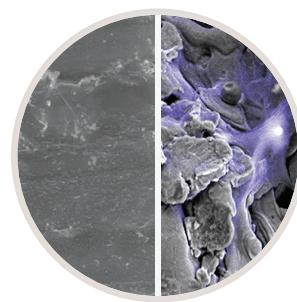
The **Ti-ACTIVE** surface topography is designed to provide enhanced cellular attachment and proliferation vs rougher titanium surfaces, enhancing opportunities for fusion.

## STALIF *Design Rationale*

### RATIONALE #1

#### Achieve Stable Fixation of the Motion Segment for Superior Biomechanics




##### Optimized Screw Trajectories

- 3-screw design utilizes a midline convergence pattern in conjunction with an optimal horizontal inclination.
- Screw trajectories are intended to reduce incidence of backout and increase expulsion resistance.



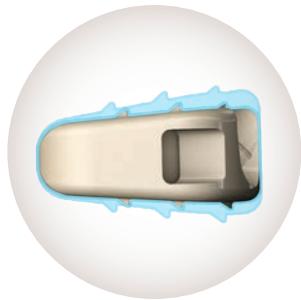
##### Anti Back-Out (ABO<sup>®</sup>) Technology

- Titanium split ring Anti Back-Out (ABO) feature provides increased resistance to screw back-out without compromising the biomechanical principles of the Integrated Interbody construct.



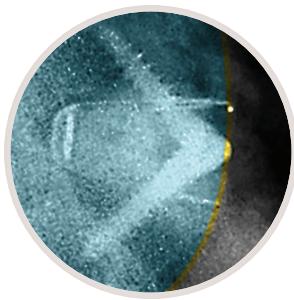
##### Material Innovations

###### Ti-ACTIVE


- Texturized surface topography provides 20x the roughness of machine finished PEEK providing enhanced stability upon implantation.
- 3-dimensional surface profile designed to provide enhanced cellular attachment and proliferation vs rougher titanium surfaces, with 2x the cellular attachment of courser titanium surfaces and 20x the cellular proliferation of other titanium surfaces.<sup>2,3</sup>

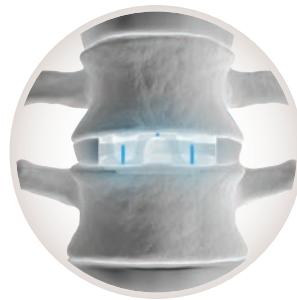
###### FLX

- **FLX** FUSE-THRU trabecular scaffold designed to allow for bony in-growth, on-growth, and thru-growth.


## RATIONALE #2

## Restore Sagittal Balance, Disc Height, &amp; Lordosis



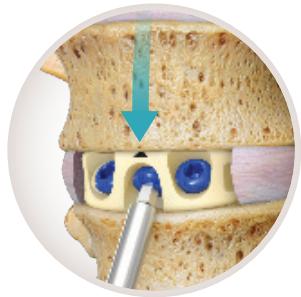

## Multiple Footprints &amp; Configurations

- Available in multiple footprint and height configurations.
- Lordotic profiles ranging from 8° to 20° to aid in sagittal balance restoration.



## No Profile® Device

- “No Profile” design allows the device to seat within the confines of the disc space.
- **STALIF** maintains axial forces within the anterior aspect of the spine rather than creating a pressure moment outside of the spine.



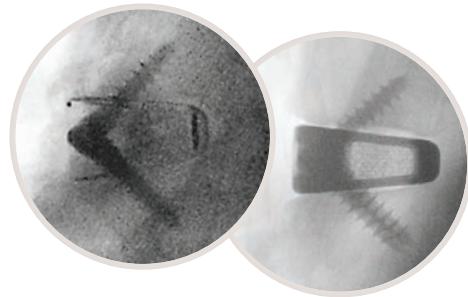

## Anatomical Design

- Anatomical shape that is designed to sit on the apophyseal ring and better fill the disc space.

## RATIONALE #3

## Enhance Opportunities for Fusion




## Compressive Lag Fixation

- Cancellous screws produce a lag effect between the vertebral body and the implanted device.
- Following Wolff's Law, the lag effect provides constant compressive forces against the implant and graft material to promote fusion.



## Large Graft Window

- The large graft area, combined with an anatomical footprint and load-sharing design, affords the best opportunity for fusion.



## Radiolucent Advantage

- Implants afford accurate post-operative assessment of fusion development.
- The **Ti-ACTIVE** surface allows for radiographic visualization of the graft-endplate contact.
- The **FLX** matrix enhances visualization of fusion post-operatively vs solid titanium devices

## Indications for Use

Refer to the IFU for indications for use and contraindications.

## Warnings & Precautions

- Patients with previous spinal surgery at the levels to be treated may not experience the same clinical outcomes as those without a previous surgery.
- Selection of an appropriately sized device for the patient is important and increases the likelihood of a satisfactory outcome.
- The implantation of the intervertebral body fusion device should be performed only by experienced spinal surgeons with specific training in the use of this type of device.
- Do not use if the package is damaged or opened. Contents may not be sterile.
- Do not use if current date exceeds label expiry date.
- Do not re-sterilize sterile implants.
- Do not use excessive force when introducing and positioning the implant within the intervertebral body space to avoid damaging the implant.
- Instrumentation provided with the implants must be used in accordance with the approved surgical technique.
- Re-usable surgical instruments must be re-sterilized prior to next use.
- Do not reuse the device even if the device shows no external signs of damage. Internal stresses from previous use may cause early failure.
- Should not be used with components of any other system or manufacturer.
- Do not use titanium with stainless steel in the same construct. Premature device failure and/or infection in the patient may occur.
- Based on fatigue testing results, when using the **STALIF M / STALIF M-Ti / STALIF M FLX** system, the physician / surgeon should consider the levels of implantation, patient weight, patient activity level, other patient conditions, etc., which may have an impact on the performance of this system.

## Case Preparation

### Required Sets

The following instrument sets are required for the **STALIF M** portfolio implants surgical technique.

- CAS01068 **STALIF M Gen 1 Instrument Set**
- CAS01069 **STALIF M Trials Set**
- CAS01687 **STALIF M Gen 1 Disc Prep Set**

OR

- STM-INST **STALIF M Instrument Set**
- CAS01069 **STALIF M Trials Set**
- DPS-INST **Anterior Lumbar Disc Prep Set**

**Note:** See Appendix for set contents and layout.

### Additionally Available Instruments

Some instruments are available by special request (see appendix). Please contact Customer Service for availability.

---

### Quick Reference Guide

The **STALIF M** Quick Reference Guide (LBL575), **STALIF M-Ti** Quick Reference Guide (LBL573), and **STALIF M FLX** Quick Reference Guide (LBL574), contain an abundance of information about implant offerings, sizes, and measurements and it is recommended to bring one into every case.

## Surgical Technique

### Approach

**STALIF M** portfolio implants are designed for use with a standard anterior approach to the spine. **STALIF M FLX**, **STALIF M-Ti**, and **STALIF M** all follow the same surgical technique.

The surgeon has a choice of three different material configurations (**FLX**, **Ti-ACTIVE**, PEEK), four different device heights (11, 13, 15, and 17mm\*) with four lordotic angles (8°, 12°, 16°, and 20°) and five medial-lateral footprints (30, 33, 36,

39, and 42mm). Heights and depths vary based on footprint. Devices and screws are supplied sterile and individually packaged.

\* Additional implant sizes and instruments may be available by request. Call customer service for availability.

### 1. Devices Shown with Three Available Material Choices

**STALIF M FLX**



FLX WITH  
**FUSE-THRU™**

**STALIF M Ti**



PEEK WITH  
**Ti ACTIVE™**

**STALIF M**



WITH  
**PEEK**

**tech  
TIP**

Material choices include 3D-printed titanium (**FLX**), PEEK with a microporous titanium surface (**Ti-ACTIVE**), and machine finished PEEK.

## Discectomy & Endplate Preparation

The anterior longitudinal ligament and annulus should be incised as close to the bony surfaces as possible to enable a thorough discectomy to be performed and allow for the **STALIF M/Ti/FLX** to be positioned on the apophyseal ring of the vertebral bodies. Use of any of the optionally provided or otherwise available disc prep instruments to remove disc material from the intervertebral space to enable trialing.

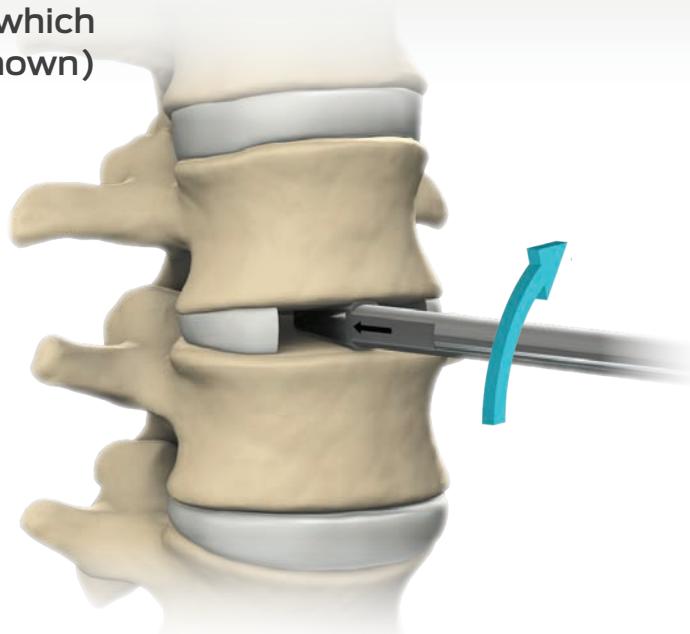
During the discectomy, particular care must be taken to fully remove the disc material from the posterolateral corners.

Paddle Distractors can be used to progressively distract the disc space sequentially (**Figure 2**) to mobilize the soft tissue, re-tension the annulus and allow for the appropriately sized device to be selected.

Once the discectomy is complete, use a rasp or curettes to expose bleeding bone. Care should be taken to only remove the superficial cartilaginous layers of the endplate. Note that excessive removal of subchondral bone may weaken the endplate, and removal of the entire endplate may later lead to segmental instability and implant subsidence.



### Paddle Distractors


IN207 (7mm), IN208 (9mm), IN209 (11mm),  
IN210 (13mm), IN337 (15mm), IN338 (17mm)



### Detachable Paddle Distractors & Handle

IN1459 (7mm), IN1461 (9mm), IN1463  
(11mm), IN1465 (13mm), IN1467 (15mm),  
IN1469 (17mm), IN889 (Handle)

## 2. Demonstrating the Paddle Distractor which is inserted, then rotated, by 90° (as shown)

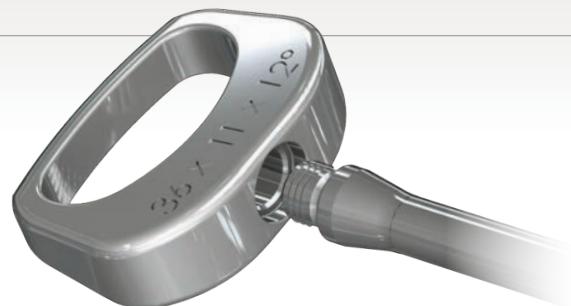


**please**  
**NOTE** *Take care to fully remove the nucleus material from the posterolateral corners.*

## Surgical Technique (continued)

### Trialing

Once the disc space has been prepared, mount the STALIF M trial sizers onto the threaded handles (Figure 3) to determine the correct device with respect to anterior/posterior (A/P) depth, width, height and lordotic angle (Figure 4). It is recommended to start with an 11mm tall by 12° trial in the desired width as this has the smallest anterior and posterior height combination. To select proper implant fit and fill, use


intraoperative A/P fluoroscopy images to visualize the trial sizer (Figure 4). The trial should be flush with the anterior edge of the vertebral body. To ensure proper implant selection, the trial must achieve a tight fit. It is recommended to select the largest footprint that can safely be implanted to optimize the load transfer across the apophyseal ring.



### Trial Handle

IN224/1

### 3. Straight Handle with Trial



### 4. Trial Sizing



**Posterior Gaping:**  
Reduce Lordosis or Increase Height



**Space Behind Trial:**  
Increase Footprint



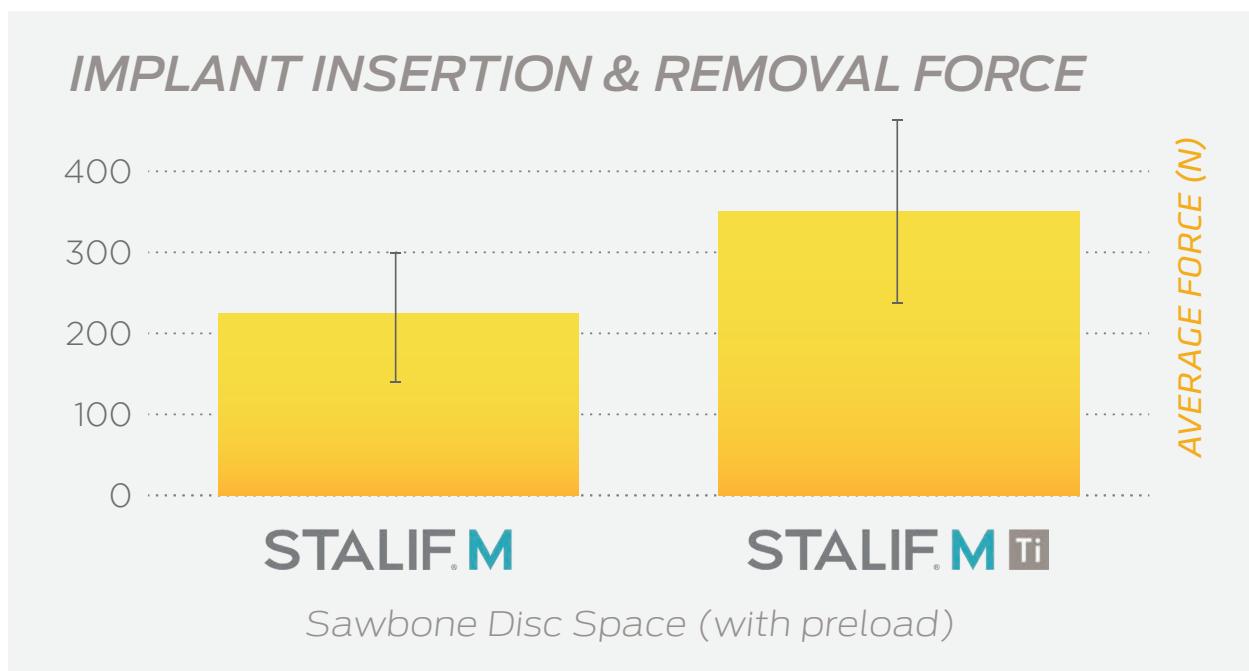
**Good Fit**

**please  
NOTE** For STALIF M FLX, trial must have a tight fit  
within disc space to limit implant movement  
during screw insertion

To remove the trial, use the slotted mallet to apply upward impaction on the trial handle shaft until the trial is free from the disc space.

Note that **STALIF M-Ti** implants may require increased insertion forces compared to the trial due to the surface roughness of the implant (see "Tech Tip" below). **STALIF M FLX** has similar handling characteristics to the PEEK **STALIF M** devices.




### Trials

MT331108, MT331112, MT331308, MT331312, MT331316, MT331508, MT331512, MT331516, MT331712, MT331716, MT361108, MT361112, MT361308, MT361312, MT361316, MT361508, MT361512, MT361516, MT361708, MT361712, MT361716, MT391108, MT391112, MT391308, MT391312, MT391316, MT391508, MT391512, MT391516, MT391712, MT391716

### tech TIP

**Ti-ACTIVE surfaced implants require increased insertion force. See graph below. (Note: Testing was performed without screws.)**

**Imaging should be performed to verify proper trial sizer fit. Please select the largest device footprint that can safely be implanted to optimize the load transfer across the apophyseal ring.**



## Surgical Technique (continued)

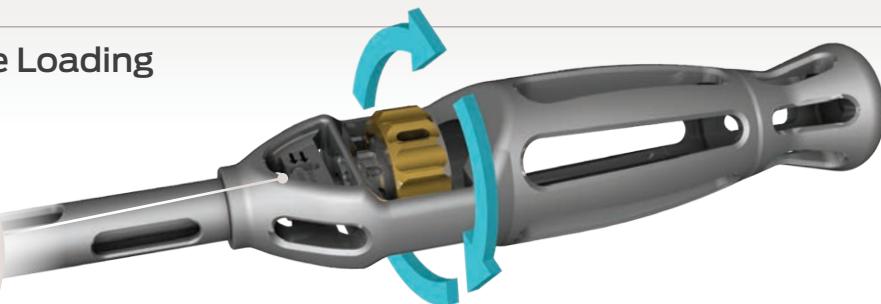
### Device Insertion

Prepare the inserter for device attachment by rotating the tensioning knob fully counterclockwise (**Figure 5**). The indicator below the tensioning knob should be next to “Release.” Attach the selected device to the inserter (**Figure 6**) and secure the device by rotating the tensioning knob clockwise (**Figure 7**). The indicator below the tensioning

knob should be next to “Capture” and the implant should be securely attached to the inserter.

An alternate inserter, the Straight Pincer Inserter, engages the outer screw holes and is available by request; please contact Customer Service for availability.




**Inserter**

IN566/1 or IN566/2



**Straight Pincer Inserter**  
(Additionally Available for Gen 1 Sets)  
IN913

### 5. Preparing Inserter for Device Loading



### 6. Securing Device

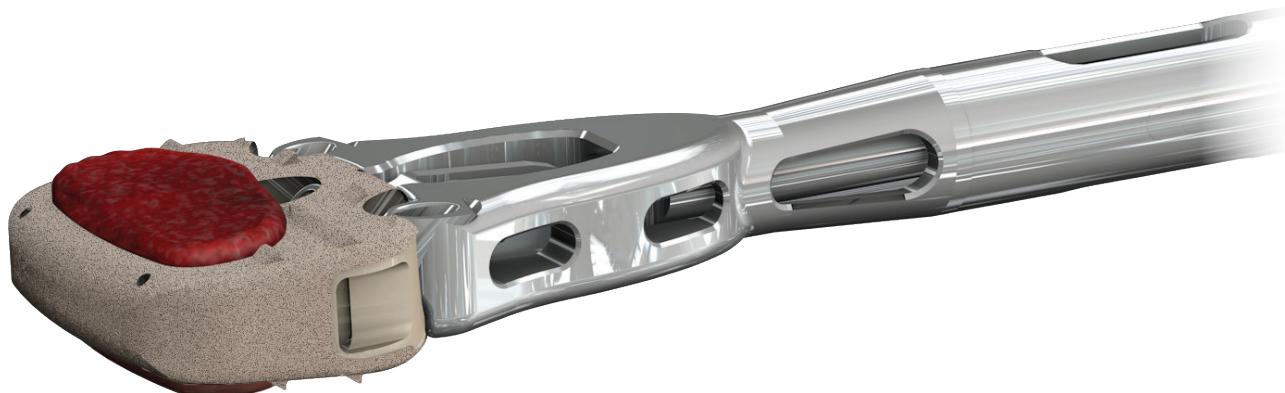


### 7. Turning Tensioning Knob Clockwise



**tech TIP** Once the Tensioning Knob has been tightened, check to verify a snug fit between the device and Inserter.

Insert and pack autograft and/or allograft into the central cavity of the implant. It is recommended that the cavity be packed 2mm proud both superiorly and inferiorly to assure optimal graft/endplate contact (**Figure 8**).




STALIF M-Ti Device (Anterior View)



STALIF M FLX Device (Anterior View)

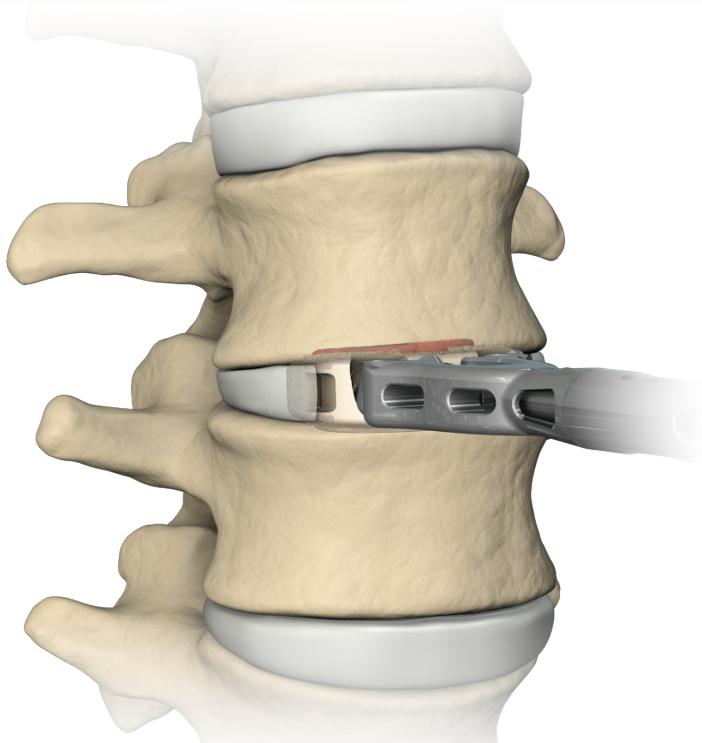
## 8. Device Packed with Graft Material



## Surgical Technique (continued)

Insert the **STALIF M** portfolio implant into the disc space using the Inserter (**Figure 9**). The implant may be placed with one screw cephalad or one screw caudal. The arrow on the inserter tip points to the vertebral body that the single screw will be placed into (**Figure 10**).




**Inserter**  
IN566/1 or IN566/2

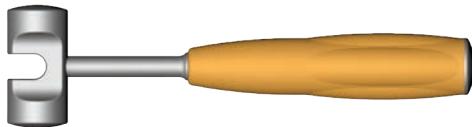
**Tamp**  
IN156/1



**Trial Handle**  
IN224/1

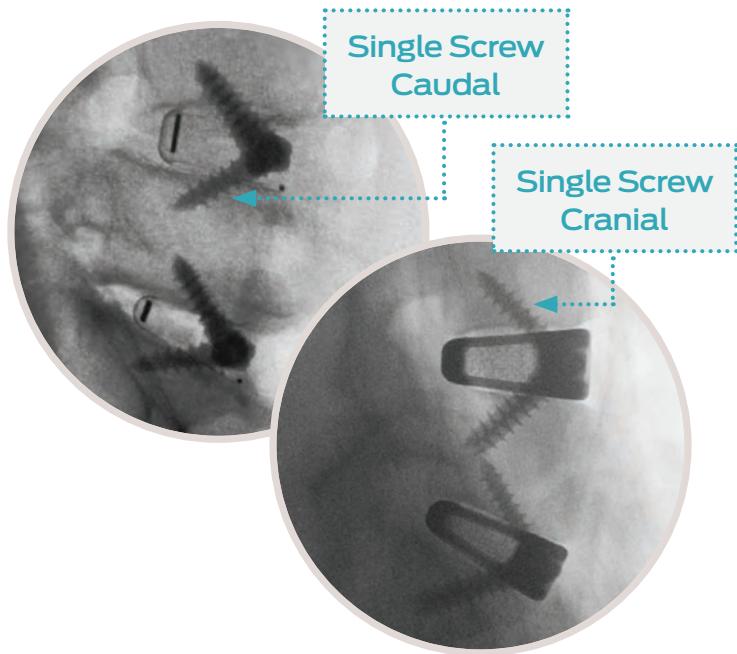
### 9. Inserting the Device



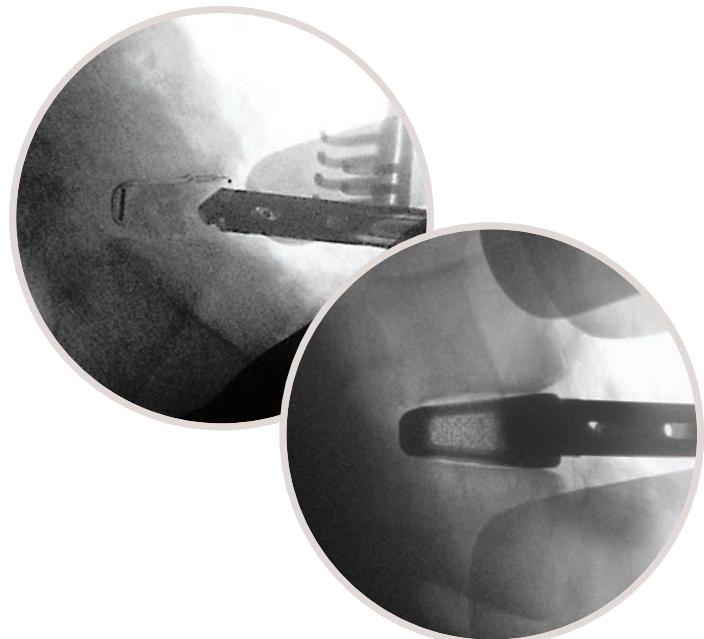

### 10. Indicator Arrow on Inserter Tip



Note that when using implants in contiguous levels, to avoid potential stress concentrations, the implants must be placed in the same orientation such that the single screw points in the same direction (i.e. single screw caudal in each level) (**Figure 11**).


The slotted mallet can be used to impact the strike surface of the inserter to advance the implant into the disc space.

Position the implant flush or up to 1mm proud of the anterior lip of the vertebral body to ease insertion of screws and allow the lag effect to reduce the device to align with the apophyseal ring. Fluoroscopy should be used to confirm implant placement prior to screw placement (**Figure 12**).




**Slotted Mallet**  
IN228

## 11. Contiguous Level Placement



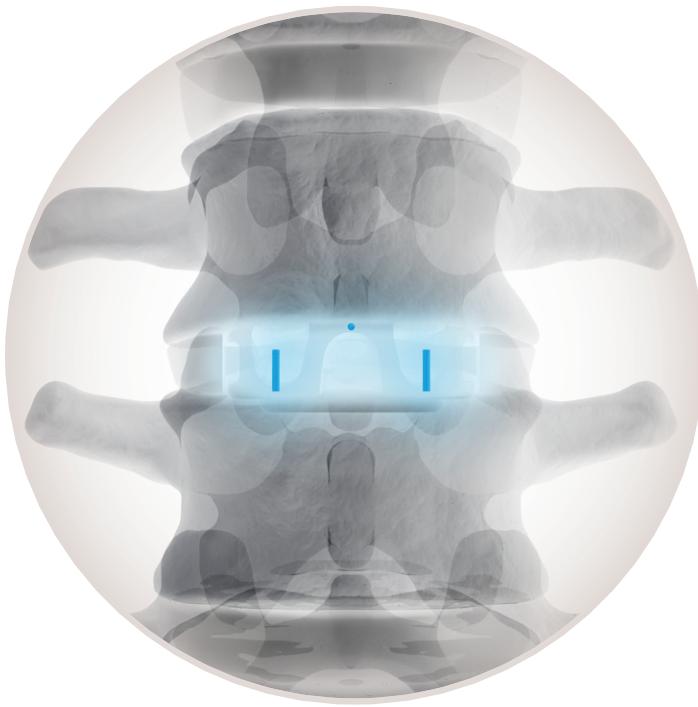
## 12. Lateral Fluoroscopy of Device Insertion



**please  
NOTE**

For contiguous levels, the single screws at each level must be pointing the same direction (i.e. single screws cephalad or single screws caudal). To avoid a potential stress concentration, the single screws should never be pointing towards each other. Similarly, the double screws should never be pointing toward each other.

## Surgical Technique (continued)


For **STALIF M/Ti** implants, three tantalum markers are used to radiologically assess implant position. There is one tantalum spherical marker to indicate the central anterior margin of the implant. In the anterior view, it should align with the spinous process (**Figure 13**).

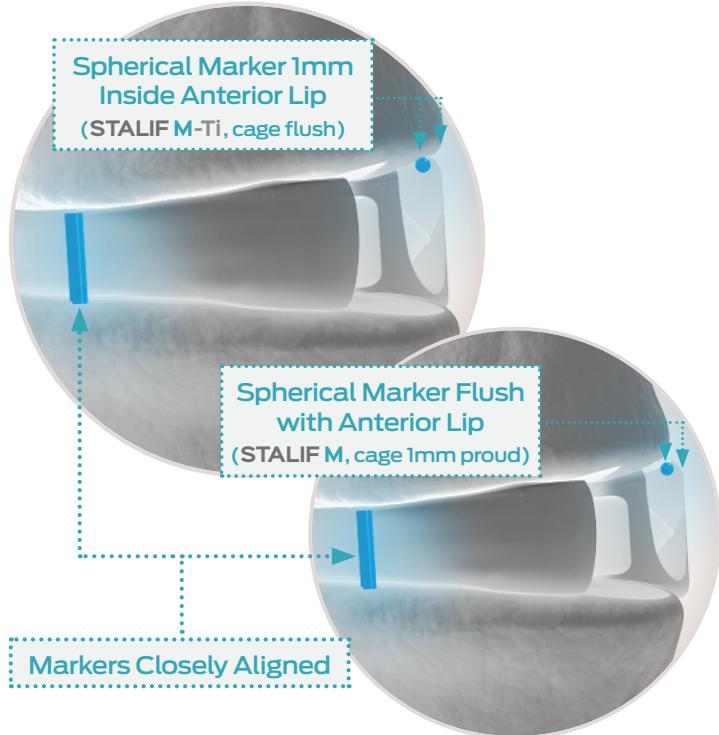
For **STALIF M**, in the lateral view the spherical marker should be flush with the anterior lip of the vertebral body (cage will be 1mm proud of anterior lip of vertebral body).

For **STALIF M-Ti**, the spherical marker should be flush with the anterior lip of the vertebral body (cage will be flush with anterior lip of vertebral body). (**Figure 14**)

There are two tantalum rod markers located on each rounded corner of the posterior portion of the **STALIF M/Ti** implants. In the A/P view the rod markers should be symmetrical to the spherical marker (**Figure 13**). The posterior rod markers should be closely aligned/superimposed on lateral fluoroscopy (**Figure 14**).

### 13. A/P Fluoroscopy to Verify Device & Marker Positioning for STALIF M/Ti




#### tech TIP

If the two rod markers are not closely aligned, either the x-ray may not be a true lateral or the device may be rotated.

#### please NOTE

STALIF M cages should be placed 1mm proud of the anterior lip of the vertebral body, placing the spherical marker flush with the anterior lip of the VB.

### 14. Lateral Fluoroscopy to Verify Device & Marker Positioning for STALIF M/Ti



STALIF M-Ti cages should be placed flush with the anterior lip of the vertebral body, placing the spherical marker 1mm recessed from the anterior lip of the VB.

For **STALIF M FLX** implants, the implant profile is visible under fluoroscopy. In the anterior view, the central screw hole should be aligned with the spinous process and the lateral screw holes should be symmetrical to the central screw hole (**Figure 15**). In the lateral view, the face of the implant should be flush with or at most 1mm proud of the anterior lip of the vertebral body, and the trapezoidal graft window should have crisp edges (**Figure 16**).

If additional positioning is required, use the tamp attached to the trial handle. Alternatively, the inserter can be reattached to the implant by reversing the steps to secure the device to the inserter prior to repositioning, or the device can be attached to the optional pincer inserter (recommended for **STALIF M-Ti**).

## 15. A/P Fluoroscopy to Verify Device Positioning for STALIF M FLX



## 16. Lateral Fluoroscopy to Verify Device Positioning for STALIF M FLX



## Surgical Technique (continued)

### Screw Placement

Once implant positioning is confirmed, select the appropriate awl and awl guide to create a pilot hole for the center screw (**Figure 17**). There are three awl options: Straight Guided Punch Awl (with built in awl guide), Ball-Joint Awl, and Universal-Joint Awl; the Ball-Joint and U-Joint awls require the use of the Low Profile Awl Guide. On occasion, to facilitate proper angulation to the screw holes and enable the awl guide to properly seat within the screw aperture, it may be

necessary to remove a small portion of the lip of the vertebral body adjacent to the screw hole. The slotted mallet may be used to impact the strike surface of the awl to create the pilot hole. Confirm a 45° awl trajectory using lateral fluoroscopy. Once the pilot hole has been created, remove the awl and awl guide, taking care not to bring the tip of the awl guide near any sensitive structures.



**Ball-Joint Awl**

IN386



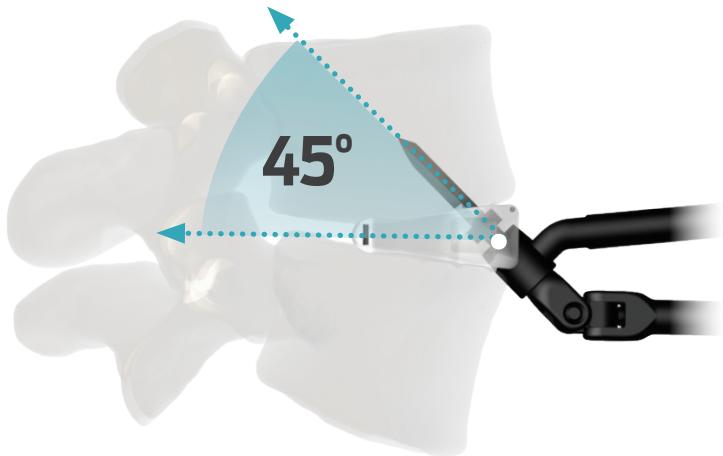
**Straight Guided Punch Awl**

IN502/2



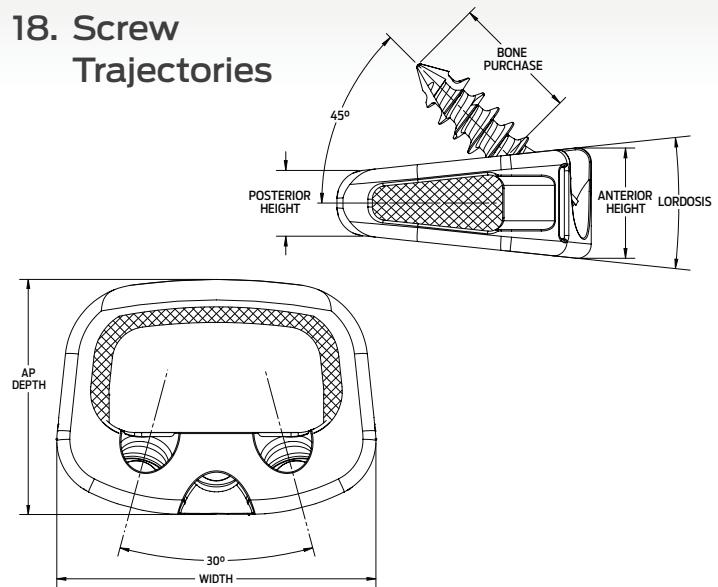
**Universal-Joint (UJ) Awl**

IN216




**Low Profile Awl Guide**

IN1430


**\*Important Note:** The IN1430 Low Profile STALIF M Awl Guide should not be used with an IN217/1 or IN217/2 Long Tip U-Joint Awl as this combination may result in A/P penetration depths that are deeper than the cage.

### 17. Confirming 45° Awl Trajectory Using Lateral Fluoroscopy



**please  
NOTE** It is critical that the awl guides be used and seated correctly so that the pilot hole is concentric and the screw trajectory optimized.

### 18. Screw Trajectories



It is also important that only one awl hole is created at a time (a screw should be placed prior to the creation of the next awl hole).

There are four screwdriver options to choose from for screw insertion: Straight, U-Joint, Ball-Joint, or Fixed Angle. All four drivers use a 3.5mm hex with a self-retention feature to hold the screw. It is recommended to match the screwdriver to the awl used to create the pilot hole. The screw attaches to the screwdriver with a press-fit; due to the self-retention feature bone wax should not be needed.

The **STALIF M** portfolio implants utilize Silony Spine's ABO cancellous screws for optimum compressive lag fixation. The 6.0mm diameter self-tapping, electro-polished ABO screws (code "STM") are provided in color coded lengths of 25mm (blue), and 30mm (green) (**Figure 19**). A length of 35mm is available by special request. Call customer service for availability. For cages 15mm or taller, a 30mm or longer screw is recommended to maximize bone purchase.



**Universal-Joint (UJ) Screwdriver**  
IN218



**Ball-Joint Screwdriver**  
IN231



**Straight Screwdriver**  
IN225

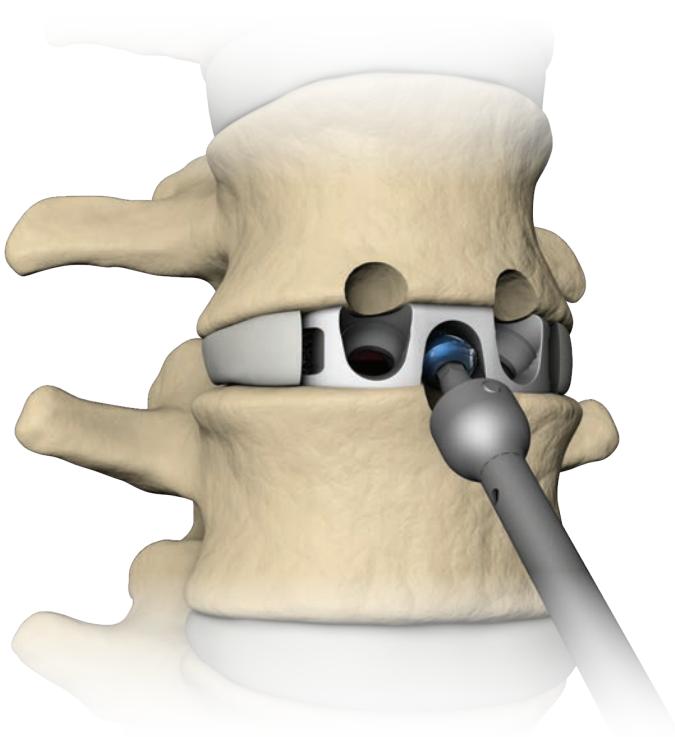


**Fixed Angle Driver**  
(Additionally Available for Gen 1 Sets)  
IN1339

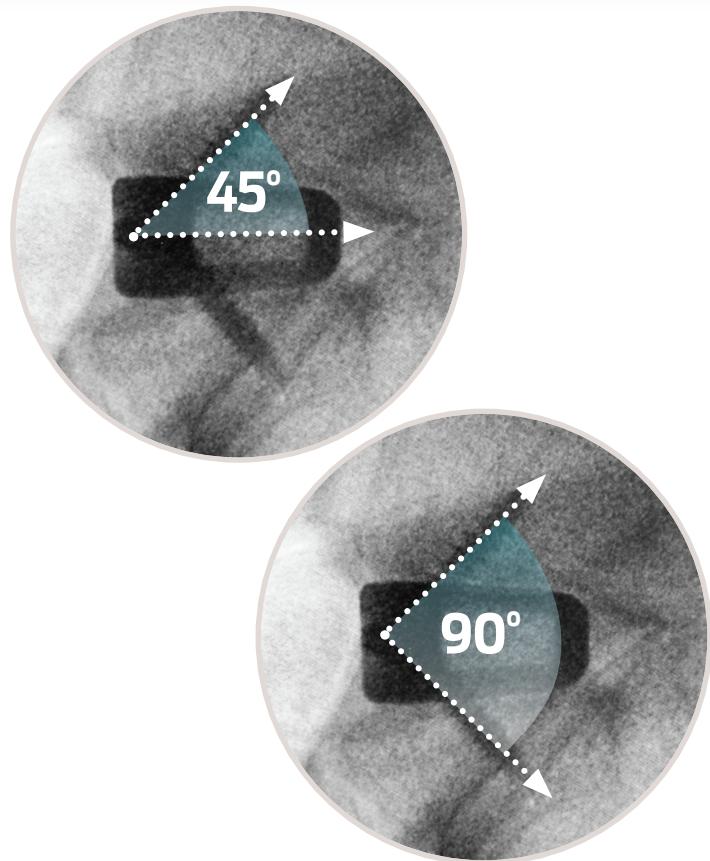


**Handle**  
(Additionally Available for Gen 1 Sets)  
IN1458

## 19. 25mm Screw and 30mm Screw Comparison




## Surgical Technique (continued)


Screw insertion is initiated with the central screw (**Figure 20**). Load the chosen screw onto the driver and insert the first screw through the center hole where the pilot hole was created. It is recommended to confirm the 45° screw trajectory using lateral fluoroscopy. For **STALIF M**, tighten the screw down 90%; for **STALIF M-Ti/FLX**, tighten the screw down 100%. Repeat the above steps to create an awl hole for the second screw, then place and fully tighten the second screw. The second awl/screw trajectory should be approximately 90° from the center screw.

It is recommended to not overtighten the screw as tactile feel will vary due to varying patient bone quality. Repeat for the third screw, fully tightening the third screw. The third screw should be in alignment with the second screw. For **STALIF M**, final tighten the center screw after the second and third screws have been placed and tightened to maximize compressive fixation.

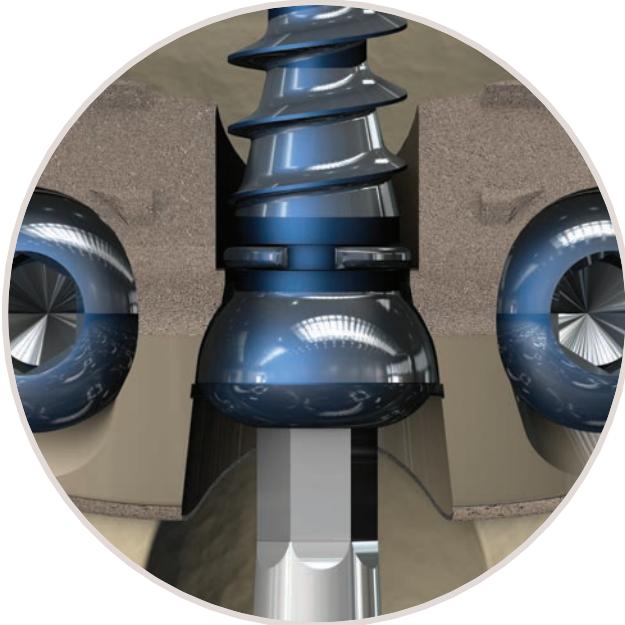
### 20. Inserting Screw with Ball-Joint Screwdriver



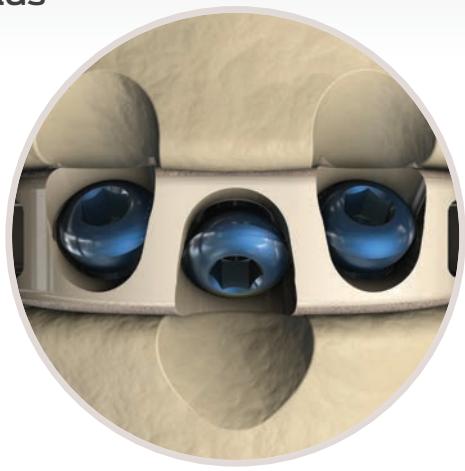
### 21. Proper Trajectory



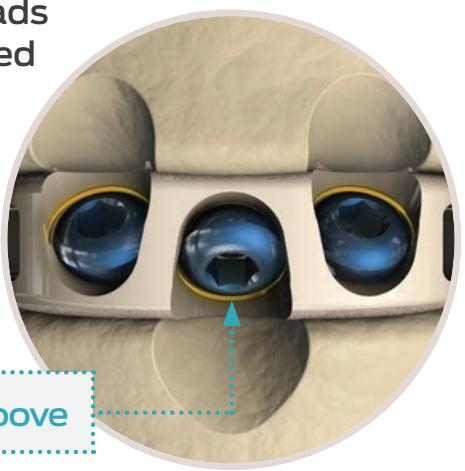
#### please NOTE


For **STALIF M** the screw should not be fully tightened to prevent rotation of the implant until an opposing screw is positioned. For **STALIF M-Ti/FLX**, each screw should be fully tightened when placed to enable proper ABO engagement.

Awl and screw trajectories should be confirmed using lateral fluoroscopy.


ABO screws feature a titanium split ring (**Figure 22**) which first compresses and then deploys during insertion. Each screw head must be fully seated within the device screw apertures to ensure the ring is properly deployed (**Figures 23 & 24**).

Bone quality varies between patients, so to optimize the screw lag effect, tactile feel and visualization can be used to determine when the screw heads are correctly seated. Indicator grooves may be visible to the surgeon when the screw heads are correctly seated (**Figure 24**).


## 22. Cancellous Screw with ABO® Titanium Split Ring Deployed



## 23. Screw Heads Not Fully Seated



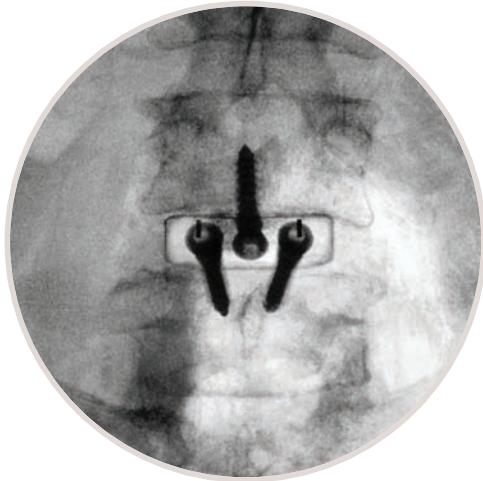
## 24. Screw Heads Fully Seated



Indicator Groove

## please NOTE

The ABO® titanium split ring is properly deployed when the screw head passes the screw-depth-indicating groove (highlighted in Figure 24).

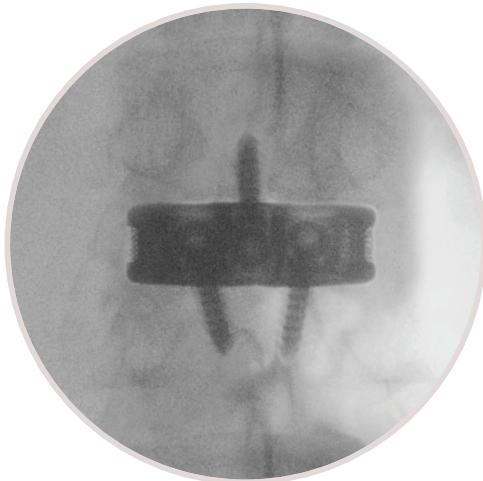

## Surgical Technique (continued)

### X-Ray Confirmation

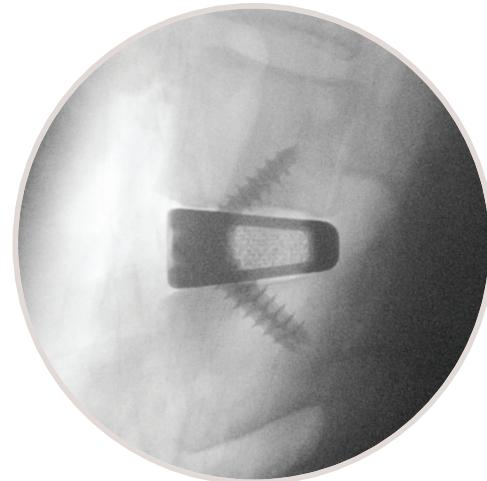
Intraoperative fluoroscopy should be taken during and after screw insertion, and prior to closure, to ensure proper positioning (**Figures 25, 26, 27, & 28**).

---

**25. A/P Fluoroscopy of STALIF M-Ti Final Positioning**




**26. Lateral Fluoroscopy of STALIF M-Ti Final Positioning**

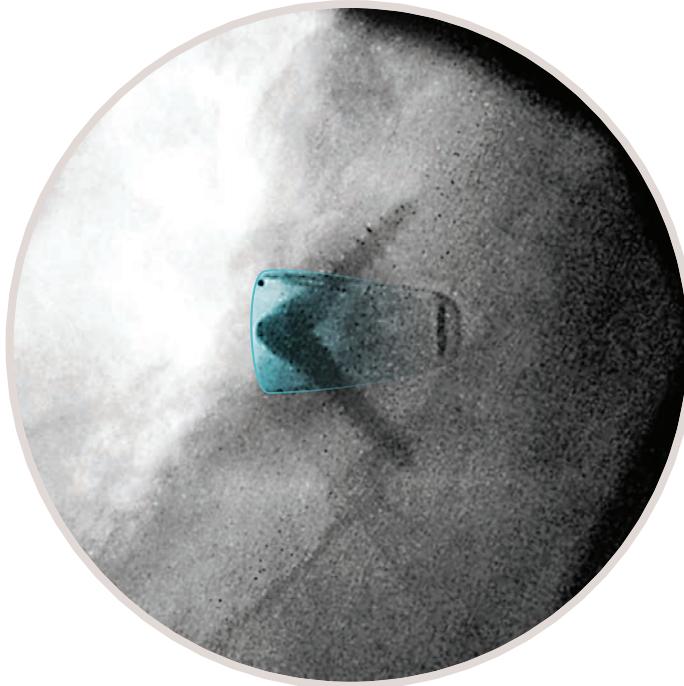



---

**27. A/P Fluoroscopy of STALIF M FLX Final Positioning**

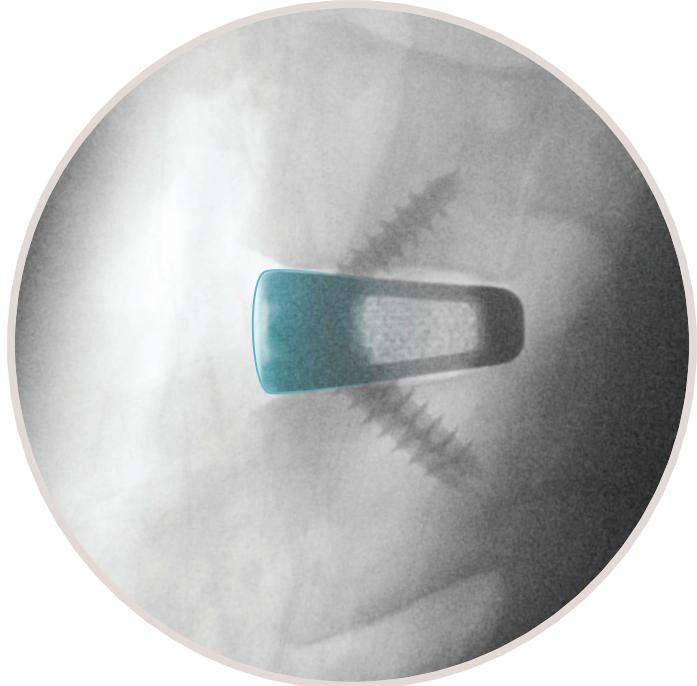


**28. Lateral Fluoroscopy of STALIF M FLX Final Positioning**




For confirmation that the screws are fully seated and the ABO is engaged, take a lateral fluoroscopy image. For **STALIF M/Ti**, the screw heads should be overlapped and in alignment with the spherical marker, and for **STALIF M-Ti**, the screw

heads should be within the confines of the **Ti-ACTIVE** surface (**Figure 29**). For **STALIF M FLX**, the screw heads should be overlapped and within the confines of the implant (**Figure 30**).


---

### 29. STALIF M-Ti Screw Heads Within Confines of Ti-ACTIVE Surface



---

### 30. STALIF M FLX Screw Heads Within Confines of the Implant



## Surgical Technique (continued)

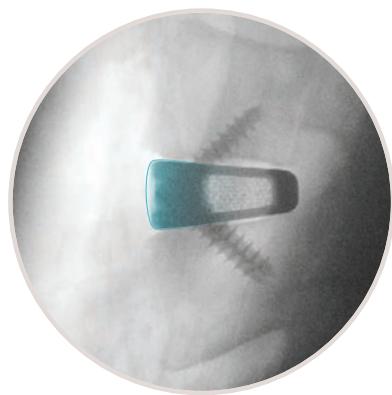
### Removal / Revision

In the unlikely event that a revision procedure is necessary, the **STALIF M** portfolio construct can be removed by reversing the steps in the surgical procedure. For **STALIF M-TI/FLX**, a pincer inserter may be necessary for removal to overcome surface friction (contact Customer Service for availability).

### Supplemental Fixation

**STALIF M** portfolio implants are indicated for use as stand-alone devices and do not require supplemental fixation. **STALIF M FLX** devices with lordotic angles greater than or equal to 20° require additional supplemental fixation indicated for use in the lumbar spine.

## Tips & Pearls


- Refer to quick reference guides.
- Posterior heights can be used to find “sister sizes” – identify implants that may fit the disc space equally as well as a desired size by matching posterior heights.

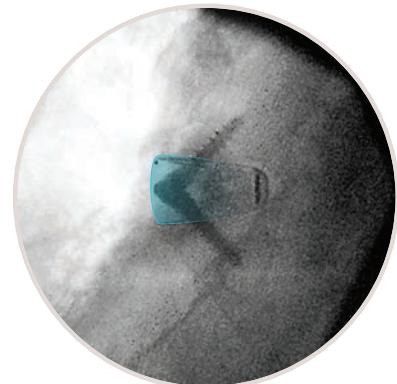
### For STALIF M PEEK:

- Place PEEK implants 1mm proud of anterior edge of VB.
- Do not recess.
- Recommend first inserting but not fully seating the center screw until two outer screws are fully secured.
- Caution against over-tightening screws (there is no audible click).
- Confirm screw ABO® engagement with lateral fluoro.
- Screw heads overlapped and in alignment with anterior spherical marker.

### For STALIF M FLX:

- Trial should have a tight fit.
- Place FLX implants flush to 1mm proud of anterior edge of VB.
- Do not recess—implant will lag & handle like PEEK.
- Recommend first inserting & fully seating the center screw.
- Recommend using lateral fluoroscopy to confirm awl & screw angulation for each screw.
- Place & fully seat each screw before awling the next screw hole.
- Caution against over tightening screws (there is no audible click).
- Confirm screw ABO® engagement with lateral fluoro.
- Screw heads overlapped and fully contained within confines of implant




### For STALIF M-Ti:

- If the trial is difficult to insert/back out, consider going down 1 height—**Ti-ACTIVE** surface adds up to 0.4mm in total height & has increased friction because of surface topography.
- Trial should be snug but only take a few impactions to back out.
- Place implant as midline as possible.
- Adjustment will be difficult due to increased friction from **Ti-ACTIVE** surface.
- If adjustment is needed, use pincer inserter (recommend requesting pincer for all **Ti-ACTIVE** cases).



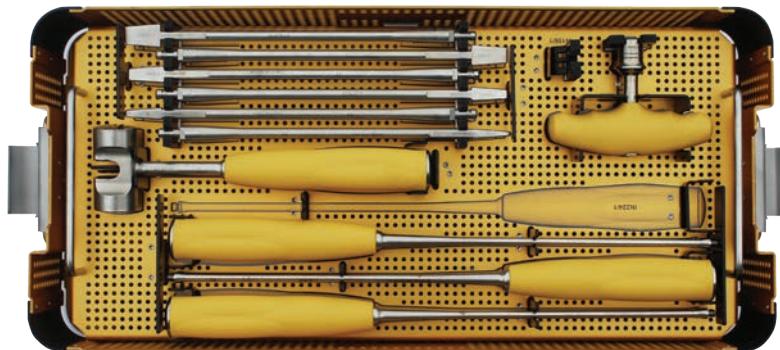
**Straight Pincer Inserter (Optional)**  
IN913

- Place **Ti-ACTIVE** implants flush with anterior edge of VB.
- Do not recess because cage will still lag (just not as much as the PEEK) & will be very difficult to back out.
- Recommend first inserting & fully seating the center screw.
- Caution against over-tightening screws (there is no audible click).
- Confirm screw ABO® engagement with lateral fluoro.
- Screw heads overlapped & in alignment with anterior spherical marker.
- Final confirmation with lateral fluoro.
- Screw heads overlapped, in alignment with anterior spherical marker, & contained within confines of **Ti-ACTIVE** surface.



# APPENDIX:

## STALIF M System Instrument Offering


### Gen 1 Instrument Set BOM (CAS01068-XXX)

For reference only. Contact Customer Service for latest BOM.

CAS01068      Instrument Tray

#### TOP LEVEL

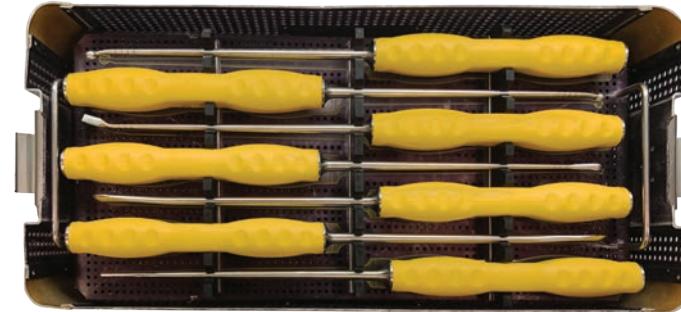
|         |                        |
|---------|------------------------|
| IN382   | T-Handle               |
| IN156/1 | Tamp                   |
| IN207   | 7mm Paddle Distractor  |
| IN208   | 9mm Paddle Distractor  |
| IN209   | 11mm Paddle Distractor |
| IN210   | 13mm Paddle Distractor |
| IN337   | 15mm Paddle Distractor |
| IN338   | 17mm Paddle Distractor |
| IN228/1 | Mallet                 |
| IN224/1 | Trial/Tamp Handle (3)  |



#### BOTTOM LEVEL

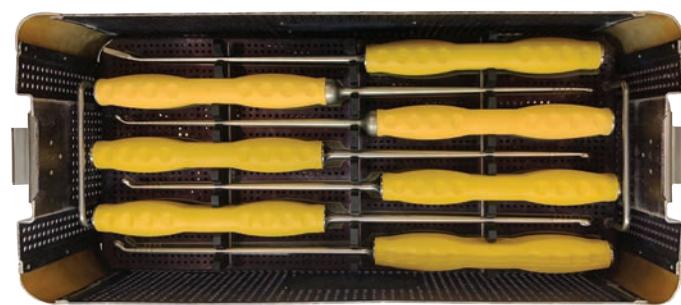
|                       |                           |
|-----------------------|---------------------------|
| IN502/2               | Straight Guided Punch Awl |
| IN216/1               | U-Joint Awl               |
| IN1430                | Low Profile Awl Guide     |
| IN386                 | Ball-Joint Awl            |
| IN231/1               | Ball-Joint Screw Driver   |
| IN225/1               | Straight Screw Driver     |
| IN218/1               | U-Joint Screw Driver      |
| IN566/1 or<br>IN566/2 | Inserter                  |




## Gen 1 Disc Prep Set BOM (DPS-BAXXX)

For reference only. Contact Customer Service for latest BOM.

|          |                                          |
|----------|------------------------------------------|
| CAS01687 | Gen 1 STALIF M Disc Prep Instrument Tray |
|----------|------------------------------------------|


### TOP LEVEL

|                          |                                     |
|--------------------------|-------------------------------------|
| IN675                    | 8mm Ring Curette, Bent 15°          |
| IN676                    | 6mm Ring Curette, Bent 15°          |
| IN677                    | 8mm x 20mm Square Curette, Bent 15° |
| IN683   04A00010         | 11mm x 4mm Teardrop Curette         |
| IN682                    | 20mm Endplate Elevator              |
| IN886   IN681   09A00005 | 25mm Endplate Elevator, Slim        |
| IN680   09A00012         | 15mm Osteotome                      |



### MIDDLE LEVEL

|                  |                                |
|------------------|--------------------------------|
| IN678            | Rasp, Bent 15°                 |
| IN670   04A00001 | 4mm x 6mm Straight Cup Curette |
| IN679            | 4mm x 6mm Bent 35° Cup Curette |
| IN671   04A00003 | 6mm x 8mm Straight Cup Curette |
| IN672   04A00004 | 6mm x 8mm Bent 35° Cup Curette |
| IN673   04A00005 | 8mm x 10mm Straight Curette    |
| IN674            | 8mm x 10mm Bent 35° Curette    |

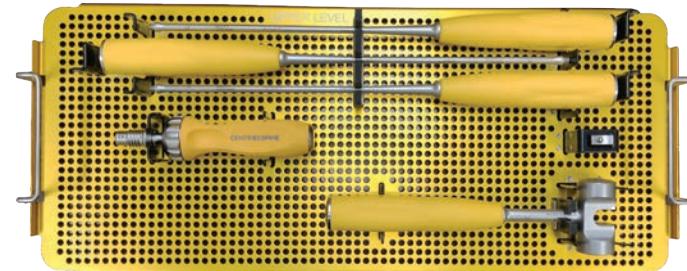


### BOTTOM LEVEL

|                                                  |                                           |
|--------------------------------------------------|-------------------------------------------|
| IN976                                            | Kidney Shaped Rasp                        |
| IN1009   GY-0001   248-1300   830-1204-0   IN710 | 4mm Kerrison Rongeur, 12"                 |
| GY-0005   228-9449   832-1208-0                  | 8mm Pituitary Rongeur, Straight, 12"      |
| IN1012   IN712   GY-0004   249-2991   873-1304-0 | 4mm Pituitary Rongeur, Straight, 13"      |
| IN1011   GY-0003   249-6101   873-1408-0         | Double-Action Rongeur, w/o Teeth, 14 3/8" |
| IN1010   GY-0002   249-2667   831-1206-1         | 6mm Pituitary Rongeur, Up, 12"            |

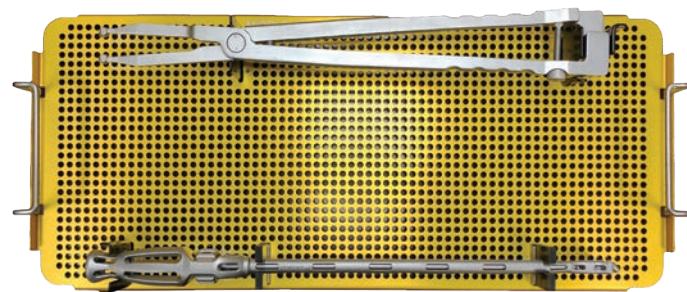


## STALIF M Instrument Set BOM (STM-INST-XXX)


For reference only. Contact Customer Service for latest BOM.

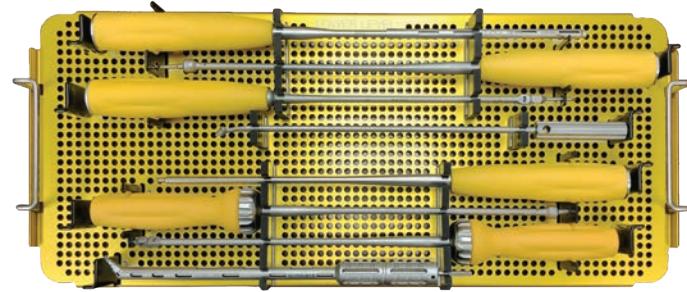
CAS02684

**STALIF M** Instrument Tray


### TOP LEVEL

|         |                                     |
|---------|-------------------------------------|
| IN675   | 8mm Ring Curette, Bent 15°          |
| IN224/1 | <b>STALIF M</b> Trial Handle        |
| IN1458  | Lumbar AO Ratchet Handle            |
| IN156/1 | <b>STALIF M</b> Tamp Head           |
| IN228/1 | <b>STALIF</b> Lumbar Slotted Mallet |




### MIDDLE LEVEL

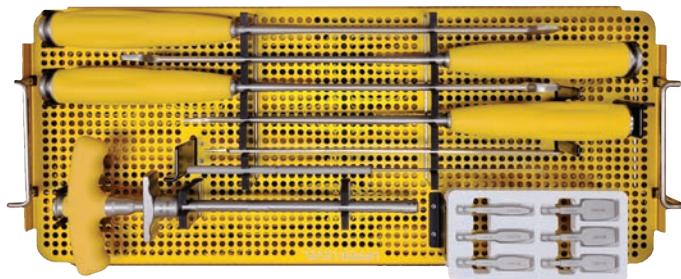
|                              |                          |
|------------------------------|--------------------------|
| IN913                        | Straight Pincer Inserter |
| IN566/2   IN566  <br>IN566/1 | <b>STALIF M</b> Inserter |
|                              |                          |



### BOTTOM LEVEL

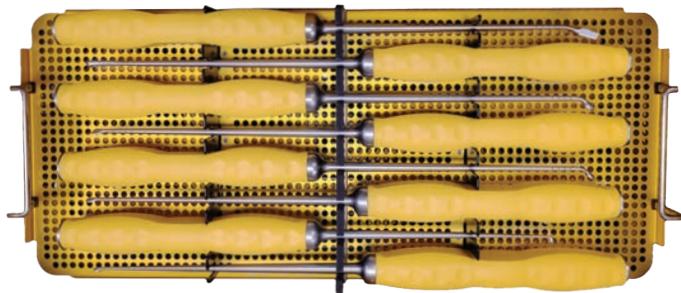
|         |                                              |
|---------|----------------------------------------------|
| IN502/2 | <b>STALIF M</b> Straight Punch Awl           |
| IN386   | <b>STALIF</b> Lumbar Ball-Joint Awl          |
| IN216/1 | <b>STALIF</b> Lumbar U-Joint Awl             |
| IN1430  | <b>STALIF M</b> Awl Guide                    |
| IN225/1 | <b>STALIF</b> Lumbar Straight Screw Driver   |
| IN231/1 | <b>STALIF</b> Lumbar Ball-Joint Screw Driver |
| IN218/1 | <b>STALIF</b> Lumbar U-Joint Screw Driver    |
| IN1339  | <b>STALIF M</b> 45° Fixed Angle Screwdriver  |




## Anterior Lumbar Disc Prep Set (DPS-INST-01-XXX & DPS-INST-02-XXX)

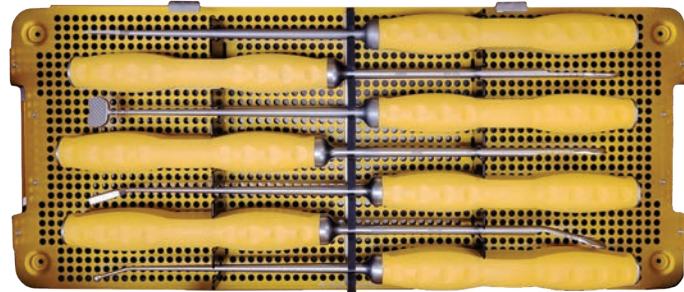
For reference only. Contact Customer Service for latest BOM.

|             |                                                     |
|-------------|-----------------------------------------------------|
| CAS02686-01 | Anterior Lumbar Disc Prep Instrument<br>Tray 1 Of 2 |
|-------------|-----------------------------------------------------|


### TOP LEVEL

|                     |                                   |
|---------------------|-----------------------------------|
| IN1057/1            | 5mm Trial Dilator                 |
| IN1058/1            | 7mm Trial Dilator                 |
| IN1059/1            | 9mm Trial Dilator                 |
| IN1473              | Midline Marker 8mm Width 250mm    |
| IN848               | 12" Knife Handle                  |
| IN1480   03.605.010 | Ball Tip Probe 90 Deg 300mm       |
| IN889               | Paddle Distractor Handle          |
| IN1459              | Paddle Distractor, 30mm AP - 7mm  |
| IN1461              | Paddle Distractor, 30mm AP - 9mm  |
| IN1463              | Paddle Distractor, 30mm AP - 11mm |
| IN1465              | Paddle Distractor, 30mm AP - 13mm |
| IN1467              | Paddle Distractor, 30mm AP - 15mm |
| IN1469              | Paddle Distractor, 30mm AP - 17mm |

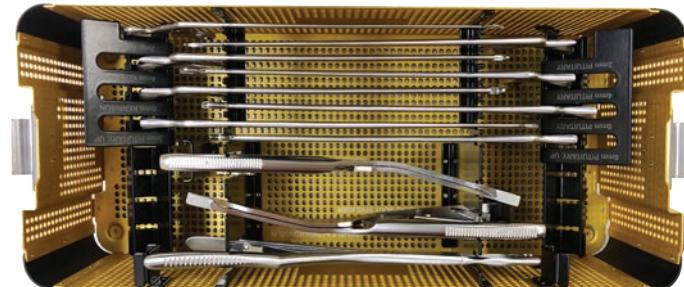



### MIDDLE LEVEL

|                  |                                                   |
|------------------|---------------------------------------------------|
| IN677            | 8mm x 20mm Square Curette, Bent 15°               |
| IN683   04A00010 | 11mm x 4mm Teardrop Curette                       |
| IN674            | 8mm x 10mm Bent 35° Curette                       |
| IN673   04A00005 | 8mm x 10mm Straight Curette                       |
| IN672   04A00004 | 6mm x 8mm Bent 35° Cup Curette                    |
| IN671   04A00003 | 6mm x 8mm Straight Cup Curette                    |
| IN1472           | Bone Curette-Angled/Oval Head 3.5mm x 4.5mm 430mm |
| IN670   04A00001 | 4mm x 6mm Straight Cup Curette                    |



**BOTTOM LEVEL**

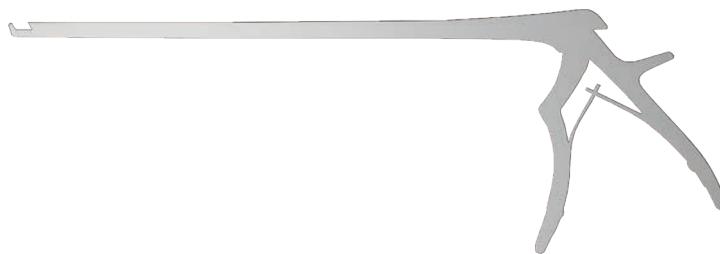

|                  |                                                  |
|------------------|--------------------------------------------------|
| IN680   09A00012 | 15mm Osteotome                                   |
| IN886            | 25mm Endplate Elevator, Slim                     |
| IN976            | Kidney Shaped Rasp                               |
| IN682            | 20mm Endplate Elevator                           |
| IN678            | Rasp, Bent 15°                                   |
| IN1120           | 20mm Endplate Elevator, Slim, 15° Forward Angled |
| IN676            | 6mm Ring Curette                                 |



**CAS02686-02** Anterior Lumbar Disc Prep  
Instrument Tray 2 Of 2

**SINGLE LEVEL**

|                                                  |                                                            |
|--------------------------------------------------|------------------------------------------------------------|
| IN1478   gS 70.6302                              | 40 Deg Up-Biting Laminectomy Punch, 2mm Width/330mm Length |
| IN1475   gs68.8535                               | 2mm Pituitary Rongeur                                      |
| IN1009   GY-0001   248-1300   830-1204-0   IN710 | 4mm Kerrison Rongeur, 12"                                  |
| IN1012   IN712   GY-0004   249-2991   873-1304-0 | 4mm Pituitary Rongeur, Straight, 13"                       |
| IN1479   gS 70.9126   GY-0006                    | 6mm Kerrison Rongeur, 12"                                  |
| IN1476   gS 68.9826   03.605.002                 | Disc Rongeur Straight Without Teeth 6mm Width 330mm        |
| IN1477   gS 68.9843   03.605.000                 | Disc Rongeur Up-Biting 3mm Width 330mm                     |
| IN1010   GY-0002   249-2667   831-1206-1         | 6mm Pituitary Rongeur, Up, 12"                             |
| PDL114                                           | Vertebral Body Spreader - Angled                           |
| IN1011   GY-0003   249-6101   873-1408-0         | Double Action Rongeur, W/O Teeth 14 3/8"                   |




## Additionally Available Instruments (Special Order)

---

**GY-0006**

6mm Kerrison Rongeur



**IN913**

Straight Pincer Inserter



**PDL114**

Vertebral Body Spreader,  
Angled



**IN887**

Fixed Angle Lumbar Screw  
Remover



**IN875**

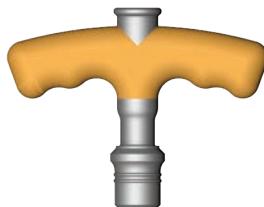
Mini-Axial Quick-Connect  
Handle (for Fixed Angle  
Lumbar Screw Remover)



---

**IN221/1**  
Straight Awl




---

**IN222/1**  
Straight Awl Guide



---

**IN435/1**  
T-Handle



---

**IN883**  
TLIF Revision Hook Tool



---

**IN884**  
TLIF Revision L Tool



## References

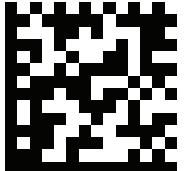
<sup>1</sup>Cappuccino A, Cunningham, BW. Multi-directional flexibility properties of the STALIF™ device versus circumferential spinal arthrodesis: an In-Vitro spine model. Spine Arthroplasty Society 6, Montreal, May 2006.

<sup>2</sup>Yoon, Byung Jo Victor et al. "Optimizing Surface Characteristics For Cell Adhesion And Proliferation On Titanium Plasma Spray Coatings On Polyetheretherketone". The Spine Journal (2016): n. pag. Web. 6 Oct. 2016.

<sup>3</sup>Silony Spine Report VAL-2014-010.

## Notes




 Silonyspine Medical GmbH  
Leinfelder Strasse 60  
70771 Leinfelden-Echterdingen  
Germany  
Tel +49 711 78 25 25 0  
Fax +49 711 78 25 25 11  
Tel (US) +1 305 916 0016  
[www.silonyspine.com](http://www.silonyspine.com)

 [labeling.silony-medical.com/contact](mailto:labeling.silony-medical.com/contact)

STG012 Rev 4 (12/2025)

Ti-ACTIVE™ & Integrated Interbody™ are trademarks of Silonyspine Corp. Silonyspine, STALIF®, ABO®, FUSE-THRU®, FLX® & No Profile® are registered trademarks of Silonyspine. All rights reserved.

